精英家教网 > 高中数学 > 题目详情
已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2正方形.若PA=2
2
,则球O的体积为
32
3
π
32
3
π
分析:由点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.由此能求出球O的体积.
解答:解:∵点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,
∴将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,
让P与A′重合,则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.
∵ABCD是边长为2的正方形,PA⊥平面ABCD,PA=2
2

∴PC2=AP2+AC2=8+8=16,
∴2R=4,R=OP=2,
球O的体积为V=
4
3
×π×23
=
32
3
π

故答案为:
32
3
π
点评:本题考查直线与平面垂直的性质,考查球内接多面体的应用,“补形”是关键,考查分析、转化与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2
3
正方形.若PA=2
6
,则△OAB的面积为
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C,D都是直径为3的球O表面上的点,PA⊥平面ABCD,四边形ABCD是正方形,若PA=1,则几何体P-ABCD的体积为
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C,D是球O的球面上的五点,正方形ABCD的边长为2
3
,PA⊥面ABCD,PA=2
6
,则此球的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C是球O表面上的四个点,且PA,PB,PC两两成60°角,PA=PB=PC=4cm,则球的表面积为
 
cm2

查看答案和解析>>

同步练习册答案