精英家教网 > 高中数学 > 题目详情

上变化时,求抛物线的顶点P的轨迹方程.

答案:
解析:

解 原方程配方得,故顶点参数方程为消去=-2y-2(0≤x≤2),这就是所求顶点P的轨迹方程.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线x2=4
3
y
的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、F、B在直线G;x=a2上的射影依次为点D、K、E,若抛物线x2=4
3
y的焦点为椭圆C的顶点.
(1)求椭圆C的方程;
(2)若直线L交y轴于点M,
MA
1
AF
MB
2
BF
,当M变化时,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A,B两点.
(1)若抛物线x2=4
3
y
的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线L交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.

查看答案和解析>>

同步练习册答案