精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙、丁四位同学一起去向老师询问各自的分班情况,老师说:你们四人中有位分到班,位分到班,我现在给甲看乙、丙的班级,给乙看丙的班级,给丁看甲的班级.看后甲对大家说:我还是不知道我的班级,根据以上信息,则( )

A. 乙可以知道四人的班级 B. 丁可以知道四人的班级

C. 乙、丁可以知道对方的班级 D. 乙、丁可以知道自己的班级

【答案】D

【解析】分析由甲的说法可知乙丙一人班一人班,则甲丁一人班一人班,由此能得出结果.

详解四人知道的情况是:自己看到、老师所说及最后甲说话

甲不知自己的班级可得乙丙必一班一,(若为两班,甲会知道自己的班级;若是两班,甲也会知道自己的班级),

可得乙看到了丙的班级可知自己的班级

丁看甲的班级,可知自己的班级

所以,乙、丁可以知道自己的班级故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2-2mx+m=0没有实数根;命题q:x∈R,x2+mx+1≥0.

(1)写出命题q的否定“q”.

(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是抛物线的准线直线与抛物线没有公共点动点在抛物线到直线的距离之和的最小值等于2.

求抛物线的方程

在直线上运动过点做抛物线的两条切线切点分别为在平面内是否存在定点使得恒成立若存在请求出定点的坐标若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确个数为(

1)若,当时,则上是单调递增函数;

2单调减区间为

3

-3

-2

-1

0

1

2

3

4

3

2

1

-2

-3

-4

上述表格中的函数是奇函数;

4)若上的偶函数,则都在图像上.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)对一切 恒成立,求实数的取值范围;

(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有个大小相同的黑球和白球.已知从袋中任意摸出个球,至少得到个白球的概率是.

(1)求白球的个数;

(2)从袋中任意摸出个球,记得到白球的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案