精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A′B′C′中,CC′=AC=BC=2,∠ACB=90°.
(1)如图给出了该直三棱柱三视图中的正视图,请根据此画出它的侧视图和俯视图;
(2)若P是AA′的中点,求四棱锥B′-C′A′PC的体积;
(3)求A′B与平面CB′所成角的正切值.
精英家教网
分析:(1)根据三视图的作法,直接画出正视图和俯视图即可.
(2)根据三视图的数据关系,求出几何体的底面面积和高,求出棱锥的体积.
(3)作出A′B与平面CB′所成角,然后解三角形求出A′B与平面CB′所成角的正切值.
解答:解:(1)
精英家教网精英家教网精英家教网
(2)由题意可知,底面面积为:3,所以四棱锥B′-C′A′PC的体积V=
1
3
×3×2
=2;
(3)连接C′B,则A′B与平面CB′所成角的正切值为:
A′C′
C′B
=
2
2
点评:本题是中档题,考查直线与平面所成角正切值的求法,棱锥的体积的求法,考查计算能力,三视图的作法,熟练掌握基本定理、基本方法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案