精英家教网 > 高中数学 > 题目详情

【题目】某大型商场在2018年国庆举办了一次抽奖活动抽奖箱里放有3个红球,3个黑球和1个白球这些小球除颜色外大小形状完全相同,从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱活动另附说明如下:

凡购物满元者,凭购物打印凭条可获得一次抽奖机会;

凡购物满元者,凭购物打印凭条可获得两次抽奖机会;

若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;

若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;

若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据单位:元,绘制得到如图所示的茎叶图.

求这20位顾客中获得抽奖机会的顾客的购物消费数据的中位数与平均数结果精确到整数部分

记一次抽奖获得的红包奖金数单位:元X,求X的分布列及数学期望,并计算这20位顾客在抽奖中获得红包的总奖金数的平均值假定每位获得抽奖机会的顾客都会去抽奖

【答案】(1)中位数为,平均数为;(2).

【解析】

(1)计算这组数据的中位数和平均数即可;

(2)根据题意知X的可能取值,计算对应的概率值,写出分布列,计算数学期望值,再求抽奖的平均值.

(1)获得抽奖机会的数据的中位数为

平均数为

(2)的可能取值为

的分布列为

.

位顾客中,有位顾客获得一次抽奖的机会,有位顾客获得两次抽奖的机会,故共有次抽奖机会.

所以这位顾客在抽奖中获得红包的总奖金数的平均值为元。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C1(x3)2(y1)24和圆C2(x4)2(y5)24.

(1)若直线l过点A(40),且被圆C1截得的弦长为2,求直线l的方程;

(2)P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若函数恰有一个零点,求的取值范围;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正弦型函数有如下性质:最大值为,最小值为;相邻两条对称轴间的距离为.

(I)求函数解析式;

(II)当时,求函数的值域.

(III)若方程在区间上有两个不同的实根,求实数的取值范

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.

(1)求证:AB∥平面EFGH

(2)AB4CD6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有如下公式:,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.

(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于正整数,定义,其中为非负整数,,且.求最大的正整数,使得存在正整数,对于任意的正整数,都有.证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对任意,有成立.

1)求的通项公式;

2)设是数列的前项和,求正整数,使得对任意恒成立;

3)设是数列的前项和,若对任意均有恒成立,求的最小值.

查看答案和解析>>

同步练习册答案