精英家教网 > 高中数学 > 题目详情
4.在正项等比数列{an}中,a1=2,S3=$\frac{26}{9}$,则数列{an}的通项公式为(  )
A.2×($\frac{2}{3}$)n-1B.2×($\frac{1}{3}$)n-1C.2×($\frac{4}{3}$)n-1D.2×($\frac{4}{3}$)n

分析 设出等比数列的公比,由题意列方程组求出公比,则通项公式可求.

解答 解:设正项等比数列{an}的公比为q(q>0),
则$\left\{\begin{array}{l}{{a}_{1}=2}\\{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=\frac{26}{9}}\end{array}\right.$,
∴${q}^{2}+q-\frac{4}{9}=0$,解得q=$\frac{1}{3}$或q=-$\frac{4}{3}$(舍),
∴${a}_{n}={a}_{1}{q}^{n-1}=2×(\frac{1}{3})^{n-1}$.
故选:B.

点评 本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.($\sqrt{x}$+$\frac{1}{x}$)n的展开式中只有第六项的二项式系数最大,则第四项为120$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(2,3)且与圆(x-3)2+y2=1相切的直线方程是x=2或4x+3y-17=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于向量$\overrightarrow{{a}_{1}}$、$\overrightarrow{{a}_{2}}$、$\overrightarrow{{a}_{3}}$,记$\overrightarrow{{S}_{3}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$,对于$\overrightarrow{{a}_{k}}$(k∈{1,2,3})如果有|$\overrightarrow{{a}_{k}}$|=|$\overrightarrow{{S}_{3}}$-$\overrightarrow{{a}_{k}}$|,则称向量$\overrightarrow{{a}_{k}}$是这一向量的“等横向量”.
(1)判断向量$\overrightarrow{{a}_{1}}$=(2,2),是否是向量组$\overrightarrow{{a}_{1}}$=(2,2)、$\overrightarrow{{a}_{2}}$=(sinα,sinα)、$\overrightarrow{{a}_{3}}$=(cosα,cosα的“等横向量”,并说明理由;
(2)如果向量组$\overrightarrow{{a}_{1}}$=(sinx,cosx)、$\overrightarrow{{a}_{2}}$(sin2x,cos2x)、$\overrightarrow{{a}_{3}}$(sin3x,cos3x)中的每一个向量都是它的“等横向量”,求x的值;
(3)如果向量$\overrightarrow{{a}_{1}}$=(u,v)、$\overrightarrow{{a}_{2}}$=(sinα、sinα)、$\overrightarrow{{a}_{3}}$=(cosα,cosα)中的每一个向量都是它的“等横向量”,求u+v的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=($\frac{1}{2}$)x,a、b∈R+,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{ab}{a+b}$),则A、B、C的大小关系是(  )
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在某次测量中,得到的A样本数据为81,82,82,84,84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A、B两个样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.标准差D.中位数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算:$\int_1^2{{{(x-1)}^5}dx}$=(  )
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=logax(a>0,a≠1)的反函数的图象过点(-1,b),则a+2b的最小值是(  )
A.1B.2C.2 $\sqrt{3}$D.2 $\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.偶函数f(x)(x∈R)满足:f(4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式xf(x)<0的解集为(  )
A.(-∞,-4)∪(4,+∞)B.(-∞,-4)∪(-1,0)C.(-4,-1)∪(1,4)D.(-∞,-4)∪(-1,0)∪(1,4)

查看答案和解析>>

同步练习册答案