精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,数列是首项为0,公差为的等差数列.

1)求数列的通项公式;

2)设,对任意的正整数,将集合中的三个元素排成一个递增的等差数列,其公差为,求证:数列为等比数列;

3)对(2)中的,求集合的元素个数.

【答案】1;(2)证明见解析;(3

【解析】

1)根据等差数列的通项公式,即可求得答案;

2)由(1,求得,根据 成等差数列,即可求得,即可求证数列为等比数列;

3)要求集合中整数的个数,关键是求出的特征,的特征与的奇偶性有关,可运用二项式定理研究其性质,当为奇数时,,同样可得,则集合的元素个数为.同样求出为偶数时的个数即可.

1 数列的前项和为,数列是首项为,公差为的等差数列

,

时,

时,

综上所述,,.

2)由(1

成等差数列,

为常数,

为等比数列.

3)①当为奇数时

同理可得,

则集合的元素个数为

②当为偶数时,同理可得的元素个数为

综上所述,集合的元素个数:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称上的高调函数. 如果定义域为的函数是奇函数,当时,,且上的8高调函数,那么实数的取值范围为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个给定的正边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

1)求证:

2)若二面角的大小为时,求的中线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为4,最小值为1,记为.

1)求实数的值;

2)若不等式成立,求实数的取值范围;

3)对于任意满足的自变量,…,,如果存在一个常数,使得定义在区间上的一个函数恒成立,则称函数为区间上的有界变差函数,试判断函数是否是区间上的有界变差函数,若是,求出的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求的单调区间;

2)若时,恒成立,求实数的取值范围.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:①;②为函数图象的一条对称轴;③函数上为减函数;④方程上有4个根;其中正确的命题个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若不等式恒成立,求k的取值范围;

3)函数,设,记上得最大值为,当最小时,求k的值.

查看答案和解析>>

同步练习册答案