【题目】已知函数.
(1)求函数的最小正周期;
(2)将函数的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数的图象,且函数的最大值为2.
(ⅰ)求函数的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数,使得>0.
【答案】
(1)
(2)
(ⅰ)=;(ⅱ)详见解析.
【解析】(1)因为==,所以函数的最小正周期T=.
(2)(i)将函数的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数=的图象。又已知函数的最大值为2,所以10+5-a=2,解得a=13. 所以=
(ii)要证明存在无穷多个互不相同的正整数,使得>0,就是要证明存在无穷多个互不相同的正整数,使得>0,即sin>. 由<知,存在0<<,使得sin=。 由正弦函数性质可知,当x时,均有sin>。因为y=sinx的周期为,所以当x(KZ)时,均有sinx>. 因为对任意的整数K,=>>1,所以对于任意正整数k, ,使得,亦即存在无穷多个互不相同的正整数,使得>0.
科目:高中数学 来源: 题型:
【题目】
A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个二元码是由0和1组成的数字其中称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某中二元码的码元满足如下校验方程组:其中运算定义为:现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
x | |||||
0 | 5 | -5 | 0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象. 若图象的一个对称中心为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015福建)“对任意x,ksinxcosx<x”是“k<1”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足:①对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为( )
A. 28 B. 100 C. 34 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(I)估计顾客同时购买乙和丙的概率;
(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;
(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(1)求y关于t的回归方程
(2)用所求回归方程预测该地区2015年()的人民币储蓄存款.
附:回归方程中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= – (k∈Z)
B.x= + (k∈Z)
C.x= – (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com