精英家教网 > 高中数学 > 题目详情
已知为抛物线上一动点,F为抛物线的焦点,定点,则的最小值为(      )
A.1B.2C.3D.5
C
由抛物线的定义知,为点到准线的距离),所以=,即的最小值为所求,可由图知:当两点所在直线与轴平行时,最小,最小值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知过点A(—4,0)的动直线l与抛物线C:相交于B、C两点,当l的斜率是
(1)求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1) 已知动点到点与到直线的距离相等,求点的轨迹的方程;
(2) 若正方形的三个顶点()在(1)中的曲线上,设的斜率为,求关于的函数解析式
(3) 求(2)中正方形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某隧道设计为双向四车道,车道总宽22m,要求通行车辆限高4.5m,隧道全长2.5km,隧道的拱线近似地看成半个椭圆形状。
(1)若最大拱高h为6m,则拱宽应设计为多少?
(2)若最大拱高h不小于6m,则应如何设计拱高h和拱宽,才能使建造这个隧道的土方工程量最小(半椭圆面积公式为h)?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线上一点到焦点的距离为2,则点的坐标是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点F在x轴的正半轴上,且F到抛物线的准线的距离为p.
(1) 求出这个抛物线的方程;
(2)若直线过抛物线的焦点F,交抛物线与A、B两点, 且="4p" ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

-1的直线与抛物线交于两点A,B,如果(O为原点)求P的值及抛物线的焦点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定直线l:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线l上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标ya=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为
求抛物线的方程.

查看答案和解析>>

同步练习册答案