精英家教网 > 高中数学 > 题目详情
6.若等差数列{an}中,${a_3}+a_4^{\;}+{a_5}=2$,a4+a5+a6=5,则a8+a9+a10=17.

分析 由题意和等差数列的性质可得a4=$\frac{2}{3}$,a5=$\frac{5}{3}$,进而可得公差d,代入a8+a9+a10=3a9,计算可得.

解答 解:由等差数列的性质可得a3+a4+a5=3a4=2,a4+a5+a6=3a5=5,
∴a4=$\frac{2}{3}$,a5=$\frac{5}{3}$,∴等差数列{an}的公差d=$\frac{5}{3}$-$\frac{2}{3}$=1,
∴a8+a9+a10=3a9=3($\frac{5}{3}$+4)=17
故答案为:17

点评 本题考查等差数列的通项公式和等差数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知$cos(α-\frac{π}{2})=\frac{3}{5}$且$α∈(\frac{π}{2},π)$,则cosα=-$\frac{4}{5}$,$tan(α-\frac{π}{4})$=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}的前n项和Sn=x•3n-1-$\frac{1}{6}$,则x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平行四平行边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=2$\overrightarrow{MA}$,N为BC的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$B.$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$C.$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x|-|x-3|<2的解集为{x|x<2.5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定义域是(  )
A.{x|x≥0}B.{x|x≤0}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y都是整数,且满足xy+2=2(x+y),则x2+y2的最大可能值为(  )
A.32B.25C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.幂函数f(x)的图象经过点($\sqrt{2}$,2),点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上,
(1)求f(x),g(x)的解析式.
(2)x为何值时f(x)>g(x)?x为何值时f(x)<g(x)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{4}{3}$•$\frac{|x-1|}{{x}^{2}+3}$,g(x)=asin($\frac{π}{3}$x+$\frac{3}{2}$π)-2a+2(a>0),给出下列结论:
①函数f(x)的值域为[0,$\frac{2}{3}$];
②函数g(x)在[0,1]上是增函数;
③对任意a>0,方程f(x)=g(x)在区间[0,1]内恒有解;
④若?x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是:$\frac{4}{9}$≤a≤$\frac{4}{5}$.
其中所有正确结论的序号为①②④.

查看答案和解析>>

同步练习册答案