精英家教网 > 高中数学 > 题目详情
函数f(x)=x+lgx-3的零点所在的大致区间是(  )
分析:利用导数先判断函数的单调性,再利用函数的零点的判定定理即可得出.
解答:解:∵函数y=x-3与y=lgx在区间(0,+∞)上单调递增,∴函数f(x)=x+lgx-3在区间(0,+∞)上单调递增,∴函数f(x)至多有一个零点.
∵f(2)=2+lg2-3=lg2-1<0,f(
5
2
)
=
5
2
+lg
5
2
-3
=lg
5
2
-
1
2
<lg
10
-
1
2
=0,f(3)=3+lg3-3=lg3>0,
f(
5
2
)f(3)<
0,
根据函数零点的判定定理可知:函数f(x)在区间(
5
2
,3)
内存在零点,又函数f(x)在(0,+∞)上单调递增,所以函数f(x)只有一个零点且在区间(
5
2
,3)
内.
故选C.
点评:熟练掌握利用导数研究函数的单调性、函数的零点的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+x-l,g(x)=ebx,其中P为自然对数的底.
(1)当b=-1时,求函数F(x)=f(x)•g(x)的极大、极小值;
(2)当b=-1时,求证:函数G(x)=f(x)+g(x)有且只有一个零点;
(3)若不等式g(x)≥ex对?x>0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范围,使f(x)为常数函数;
(Ⅱ)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)定义在R上的奇函数f(x)满足f(1-x)=f(x)且x∈[0,l]时,f(x)=
2x4x+1

(Ⅰ)求函数f(x)在[-l,l]上的解析式;
(II)当λ为何值时,关于x的方程f(x)=λ在[-2,2]上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)函数f(x)=
x+
1
2
,x∈[0,
1
2
)
2(1-x),x∈[
1
2
,1]
,定义f(x)的第k阶阶梯函数fk(x)=f(x-k)-
k
2
,x∈(k,k+1]
,其中k∈N*,f(x)的各阶梯函数图象的最高点Pk(ak,bk),最低点Qk(ck,dk).
(1)直接写出不等式f(x)≤x的解;
(2)求证:所有的点Pk在某条直线L上.
(3)求证:点Qk到(2)中的直线L的距离是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x0处有相同的切线l.
(I)若a=
1
2
,求切线l的方程;
(II)已知m<x0<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x0时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案