精英家教网 > 高中数学 > 题目详情

【题目】已知下列命题其中正确的有(

A.“实数都大于0”的否定是“实数都小于或等于0

B.“三角形外角和为360度”是含有全称量词的真命题

C.“至少存在一个实数,使得”是含有存在量词的真命题

D.“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题

【答案】BCD

【解析】

根据命题的否定可判断A,根据全称量词的概念及命题真假判断,可知B;根据存在量词的概念及命题真假判断可知C;根据全称量词的概念可判断D.

对于A, “实数都大于0”的否定是实数不都大于0”,A错误.

对于B, “三角形外角和为360含有全称量词,且为真命题,所以B正确;

对于C, “至少存在一个实数,使得含有存在量词,且为真命题,所以C正确;

对于D, “能被3整除的整数,其各位数字之和也能被3整除是全称量词命题,所以D正确.

综上可知,正确命题为BCD

故答案为: BCD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于点且经过点求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象过点(0,1),如图所示.

(1)求函数的表达式;

(2)将函数的图象向右平移个单位,得函数的图象,求的最大值,并求出此时自变量x的集合;

(3),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)空间四边形的对角线分别为的中点,,求异面直线所成的角;

2)如图,四棱柱中,底面是正方形,侧棱底面的中点.求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①若集合,则

②定义在上的函数 为奇函数,则必有

③方程有两个实根;

④存在,使得.

其中说法正确的序号是( )

A.②③B.②④

C.①②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.

(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;

(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.

查看答案和解析>>

同步练习册答案