精英家教网 > 高中数学 > 题目详情
2.证明:若f(x)=cos(x+φ)为偶函数,则必有φ=kπ(k∈z).

分析 由题意可得对任意的x,都有f(-x)=f(x),化简可得sinxsinφ=0,故sinφ=0,从而得到φ=kkπ,k∈z.

解答 证明:若f(x)=cos(x+φ)为偶函数,则对任意的x,都有f(-x)=f(x),即cos(-x+φ)=cos(x+φ),
∴cosxcoφ+sinxsinφ=cosxcoφ-sinxsinφ,∴sinxsinφ=0,∴sinφ=0,∴φ=kkπ,k∈z.

点评 本题主要考查余弦函数的奇偶性,偶函数的定义,两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);
(2)已知f($\frac{1}{x}$)=$\frac{x}{1-{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.字母N、Z、Q和R分别表示自然数集、整数集、有理数集和实数集,则它们之间的关系是(  )
A.N?Q?Z?RB.N?Z?Q?RC.R?Q?Z?ND.Z?N?Q?R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点M为抛物线y=$\frac{1}{2}$x2+$\frac{3}{2}$上任意一点,点N为圆C:(x-3)2+y2=2上任意一点,则|MN|的最小值为(  )
A.2B.$\sqrt{2}$C.1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={-1,1,3},B={1,m2-m+1},且B?A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若Sn为数列{an}的前n项和且Sn=n2+3n,若{bn}为等比数列且b2=4,b5=32.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=an•bn,Tn数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若α,β满足0<α,β<π,则α-2β的取值范围是(  )
A.(-π,0)B.(-2π,π)C.(-π,2π)D.(0,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=$\frac{1}{2}$x2-tx+3lnx,g(x)=$\frac{2x+t}{{x}^{2}-3}$,且a,b为函数f(x)的极值点(0<a<b).
(1)判断函数g(x)在区间[-b,-a]上的单调性,并证明你的结论;
(2)若曲线g(x)在x=1处的切线的斜率为-4,且方程g(x)-m=0(x≤0)有两个不等的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知O点在△ABC的内部,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积与△AOC的面积之比是$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案