分析 利用三角形的面积求出BA,然后利用余弦定理求解即可.
解答 解:在△ABC中,若BC=2,∠B=60°,△ABC的面积为3,
可得3=$\frac{1}{2}×2×AB×\frac{\sqrt{3}}{2}$,AB=2$\sqrt{3}$,又BC=2,∠B=60°,
由余弦定理可得AC=$\sqrt{{BC}^{2}+{BA}^{2}-2BC•BAcosB}$=$\sqrt{4+12-2×2×2\sqrt{3}×\frac{1}{2}}$=2$\sqrt{4-\sqrt{3}}$.
故答案为:$2\sqrt{4-\sqrt{3}}$.
点评 本题考查余弦定理的应用,三角形的面积的求法,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,1) | B. | (3,2) | C. | (5,2) | D. | (4,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com