精英家教网 > 高中数学 > 题目详情

【题目】某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:

单位(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

(1)按照上述数据,求四归直线方程,其中

(2)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)

【答案】(1);(2)单价定为10元时,商场可获得最大利润.

【解析】

(1)计算平均数,利用即可求得回归直线方程;

(2)设工厂获得的利润为元,利用利润=销售收入-成本,建立函数,利用配方法可求工厂获得的利润最大.

(1)由于,

.

所以

从而回归直线方程为.

(2)设商场获得的利润为元,依题意得

.

当且仅当时,取得最大值.

故当单价定为10元时,商场可获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}为等差数列,数列{bn}为等比数列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),则数列{bn}的公比为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ= ,曲线C1 , C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的半径为2,圆心在轴的正半轴上,且与直线相切.

(1)求圆的方程。

(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且△的面积最大?若存在,求出点的坐标及对应的△的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数
(1)求函数f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角, ,c=1,且f(A)=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;

②“若,则方程有实根”的逆否命题;

③“全等三角形的面积相等”的否命题;

④“若,则”的否命题.

其中真命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为 (∠ACB= ),墙AB的长度为6米,(已有两面墙的可利用长度足够大),记∠ABC=θ
(1)若θ= ,求△ABC的周长(结果精确到0.01米);
(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积△ABC的面积尽可能大,问当θ为何值时,该活动室面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数处的切线方程

(2)若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x1 , x2是函数f(x)=2sin2x+cos2x﹣m在[0, ]内的两个零点,则sin(x1+x2)=

查看答案和解析>>

同步练习册答案