【题目】已知是公差不为零的等差数列,满足,且、、成等比数列.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
【答案】(1);(2)
【解析】试题分析:(1)设等差数列 的公差为,由a3=7,且、、成等比数列.可得,解之得即可得出数列的通项公式;
2)由(1)得,则,由裂项相消法可求数列的前项和.
试题解析:(1)设数列的公差为,且由题意得,
即 ,解得,
所以数列的通项公式.
(2)由(1)得
,
.
【题型】解答题
【结束】
18
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
科目:高中数学 来源: 题型:
【题目】如图1,在△中, , 分别为, 的中点, 为的中点, , .将△沿折起到△的位置,使得平面平面, 为的中点,如图2.
(1)求证: 平面;
(2)求证:平面平面;
(3)线段上是否存在点,使得平面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:①若,则;②若,则存在唯一实数,使得;③若,则;④若,且与的夹角为钝角,则;⑤若平面内定点满足,则为正三角形.其中正确的命题序号为 ________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.
【答案】(1);(2)
【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;
(2)设, ,
当直线的斜率不存在时,可得;
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去通过运算可得
,同理可得,由此得到直线的斜率为,
直线的斜率为,进而可得.
试题解析:(1)设由题,
解得,则,
椭圆的方程为.
(2)设, ,
当直线的斜率不存在时,设,则,
直线的方程为代入,可得,
, ,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去可得:
,
又,则,代入上述方程可得
,
,则
,
设直线的方程为,同理可得,
直线的斜率为,
直线的斜率为,
.
所以,直线与的斜率之积为定值,即.
【题型】解答题
【结束】
21
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若方程有两个实数根, ,且,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
(1)求证:DE∥平面AA1C1C;
(2) 求证:BC1⊥AB1;
(3)设AC=BC=CC1 =1,求锐二面角A- B1C- A1的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com