精英家教网 > 高中数学 > 题目详情
14.如图,在空间四边形ABCD中,E是线段AB的中点.
(1)若CF=2FD,连接EF,CE,AF,BF化简下列各式,并在图中标出化简得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F为CD的中点,求证:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

分析 (1)利用平面向量的加减运算的几何意义化简;
(2)取BD中点G,利用中位线定理及三角形法则证明.

解答 解:(1)①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}+\overrightarrow{BD}$=$\overrightarrow{AD}$;②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$=$\overrightarrow{AF}+\overrightarrow{FB}-\overrightarrow{AC}$=$\overrightarrow{AB}-\overrightarrow{AC}$=$\overrightarrow{CB}$;③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$=$\overrightarrow{EB}+\overrightarrow{BC}+\overrightarrow{CF}$=$\overrightarrow{EF}$.
(2)取BD中点G,连接EG,FG,则$\overrightarrow{EF}=\overrightarrow{EG}+\overrightarrow{GF}$=$\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{BC}$.

点评 本题考查了平面向量的线性运算及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)在区间[m,n]上为增函数,则f(x)在[m,n]上(  )
A.只有一个零点B.至少有一个零点C.至多有一个零点D.没有零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正项数列{an}满足a1=1,(n+2)an+12-(n+1)an2+anan+1=0,则an=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:如图,D、E分别是△ABC边AB和AC上的点,且$\frac{BD}{EC}$=$\frac{AB}{AC}$.求证:$\frac{AE}{AC}$=$\frac{AD}{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知三棱锥A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=2$\sqrt{3}$,则三棱锥A-BCD的外接球的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点A(-2,1)到直线y=2x-5的距离是(  )
A.2B.$\frac{10\sqrt{3}}{3}$C.$\frac{8\sqrt{5}}{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若sin4θ+co4sθ=1,则sinθcosθ的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={1,2,3,4,5,6},集合A={2,3,4,5},B={3,5,6},则A∪(∁UB)=(  )
A.{1,3}B.{2,4}C.{1,2,4,5,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=2${\;}^{{x}^{2}-1}$的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案