精英家教网 > 高中数学 > 题目详情
2条直线将一个平面最多分成4部分,3条直线将一个平面最多分成7部分, 4条直线将一个平面最多分成11部分,……;,,;……
(1)条直线将一个平面最多分成多少个部分(>1)?证明你的结论;
(2)个平面最多将空间分割成多少个部分(>2)?证明你的结论
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(I)证明:AB1⊥BC1
(II)求点B到平面AB1C1的距离;
(III)求二面角C1—AB1—A1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(示范性高中做)
已知正方体的棱长为1,点是棱的中点,点是棱的中点,点是上底面的中心.
(Ⅰ)求证:MO平面NBD
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面是正三角形,

(Ⅰ)求异面直线所成角的余弦值;
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是.

⑴求二面角的大小;
⑵求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)在四棱锥P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD

PA=2AB
(1)求证:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,三棱柱中,侧面底面,
,O中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,
确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱中,.有下列条件:

;②;③.其中能成为
的充要条件的是(填上该条件的序号)________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的半径为1,三点都在球面上,且每两点间的球面距离均为,则球心到平面的距离为
A.B.C.D.

查看答案和解析>>

同步练习册答案