精英家教网 > 高中数学 > 题目详情
11.斜率为1的直线与双曲线2x2-y2=1相交于A、B两点,又AB中点的横坐标为2.
(Ⅰ)求直线的方程   
(Ⅱ)求线段AB的长.

分析 (Ⅰ)设出直线方程,代双曲线方程,利用韦达定理及AB中点的横坐标为1,求出m,即可求直线的方程;
(Ⅱ)利用弦长公式,即可求得线段AB的长.

解答 解:(Ⅰ)设斜率为1的直线l的方程为y=x+m,代入2x2-y2=1,消去y可得x2-2mx-(m2+1)=0,
∴△=8m2+4>0,
设A(x1,y1),B(x2,y2),则x1+x2=2m,x1x2=-(m2+1),
∵AB中点的横坐标为1,
∴x1+x2=2m=4,
∴m=2,
∴直线的方程为y=x+2;
(Ⅱ)x1+x2=4,x1x2=-5,
∴|AB|=$\sqrt{2}$•$\sqrt{16+20}$=6$\sqrt{2}$.

点评 本题考查直线与双曲线的位置关系,考查韦达定理及弦长公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.判断下列命题的真假:
(1)方程x2-3x-4=0的判别式大于或等于0;
(2)正方形是轴对称图形且正三角形也是轴对称图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在正方形ABCD-A1B1C1D1中,若平面a平行于该正方体的体对角线BD,则平面a在该正方体上截得的图形不可能为②③④(填序号)
①正方形;②正三角形;③正六边形;④直角梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元.
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线的中心在原点,焦点在x轴上,若其渐进线与圆x2+y2-6y+3=0相切,则此双曲线的离心率等于(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个几何体的三视图如图所示,则该几何体的体积为π;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某空间几何体的三视图(单位:cm)如图所示,则此几何体的体积为(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,则这个几何体的体积为(  )
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案