精英家教网 > 高中数学 > 题目详情
4.为了调查高二年级630名学生对学校食堂午餐学生浪费饭菜的情况,打算从中抽取一个容量为45的样本,考虑采取系统抽样,则分段间隔k为(  )
A.16B.14C.12D.22

分析 系统抽样时将整个的编号分段要确定分段的间隔,当总体个数除以样本容量是整数时,则间隔确定,当不是整数时,通过从总体中删除一些个体(用简单随机抽样的方法)使剩下的总体中个体的个数能被样本容量整除.

解答 解:由题意知本题是一个系统抽样,
总体中个体数是630,样本容量是45,
根据系统抽样的步骤,得到分段的间隔k=$\frac{630}{45}$=14,
故选:B.

点评 一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知角θ的终边经过点P(3,-4).
(1)求sinθ,cosθ和tanθ的值;
(2)求$\frac{cos(3π-θ)+cos(\frac{3π}{2}+θ)}{sin(\frac{π}{2}-θ)+tan(π+θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函数f(x)的最小正周期和对称中心;
(Ⅱ)求函数f(x)在区间[$\frac{π}{3}$,π]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{\sqrt{5}}{2}$,P是该双曲线上的点,P在该双曲线两渐近线上的射影分别是A、B,则|PA|•|PB|的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,点(2,$\frac{2π}{3}$)到直线$ρsin(θ-\frac{π}{3})$=0的距离为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.观察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此规律,当n∈N*时,
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=(  )
A.4nB.4n-1C.42n-1D.42n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.当n为正奇数时,$C_7^0{7^n}+C_n^1{7^{n-1}}+C_n^2{7^{n-2}}+…+C_n^{n-1}7$除以9的余数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的最大值与最小值
(1)y=2sinx-3,x∈R
(2)y=$\frac{7}{4}$+sinx-sin2x,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\sqrt{a{x^2}+bx}$满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是2.

查看答案和解析>>

同步练习册答案