【题目】在△ABC中,AD是角A的平分线.
(1)用正弦定理或余弦定理证明: ;
(2)已知AB=2.BC=4, ,求AD的长.
【答案】
(1)解:证明:在△ABC中,由正弦定理得: = .
在△ADC中,由正弦定理得: .
∵∠BAD=∠DAC,
∴sin∠BAD=sin∠DAC,
又∵∠BAD+∠ADC=π,
∴sin∠BAD=sin∠ADC,
∴
(2)解:在△ABC中,由余弦定理得:AC2=AB2+BC2﹣2ABBCcosB=22+42﹣2× =16.
∴AC=4.
由(1)知, = = ,
又BD+DC=BC=4,
∴BD= .
在△ABD中,由余弦定理得:AD2=AB2+BD2﹣2ABBDcosB=22+( )2﹣2× = .
∴AD= .
【解析】(1)由已知及正弦定理得: = , ,由sin∠BAD=sin∠DAC,结合∠BAD+∠ADC=π,可得sin∠BAD=sin∠ADC,即可得证 .(2)由已知及余弦定理可求AC的值,由(1)及BD+DC=BC=4,可求BD的值,进而利用余弦定理可求AD的值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵ABC﹣A1B1C1中,AC⊥BC.
(Ⅰ)求证:四棱锥B﹣A1ACC1为阳马;并判断四面体B﹣A1CC1是否为鳖臑,若是,请写出各个面的直角(只要求写出结论).
(Ⅱ)若A1A=AB=2,当阳马B﹣A1ACC1体积最大时,求二面角C﹣A1B﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市公租房的房源位于A,B,C,D四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:
(1)求恰有1人申请A片区房源的概率;
(2)用x表示选择A片区的人数,求x的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 经过点 ,且离心率为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C的左,右顶点,P为椭圆上异于A,B的一点,以原点O为端点分别作与直线AP和BP平行的射线,交椭圆C于M,N两点,求证:△OMN的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定义 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1 , a2 , …,an},求证:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且 .
(Ⅲ)已知集合A={a1 , a2 , …,a2m}满足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为 ,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=﹣2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM||PN|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x、y满足 ,目标函数z=x+ay.
(1)当a=﹣2时,求目标函数z的取值范围;
(2)若使目标函数取得最小值的最优解有无数个,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.
(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com