精英家教网 > 高中数学 > 题目详情
15.已知二项式(x-$\frac{a}{\sqrt{x}}$)6的展开式中含x${\;}^{\frac{3}{2}}$项的系数为20,则${∫}_{a}^{1}(\sqrt{1-{x}^{2}})dx$=$\frac{π}{2}$.

分析 利用二项式定理求出a的值,然后根据积分公式即可得到结论.

解答 解:二项式二项式(x-$\frac{a}{\sqrt{x}}$)6的展开式的通项为(-a)rC6rx${\;}^{6-\frac{3r}{2}}$,
令6-$\frac{3}{2}$r=$\frac{3}{2}$,解得r=3,
∴(-a)3C63=20,
解得a=-1,
∴${∫}_{a}^{1}(\sqrt{1-{x}^{2}})dx$=${∫}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx,表示以原点为圆心以1为半径的圆的面积的二分之一,
故${∫}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.

点评 本题主要考查二项式定理以及的定积分的计算,要求熟练掌握相应的公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设a为实数,f(x)=$\left\{\begin{array}{l}{{x}^{3},x>a}\\{\frac{1}{3}{x}^{3},x≤a}\end{array}\right.$,g(x)=ax|x-a|.
(1)若x≤a时,方程f(x)=g(x)无解,求a的范围;
(2)设函数F(x)=f(x)-g(x).
①若h(x)=F′(x),写出函数h(x)的最小值;
②当x>a时,求函数H(x)=F(x)-x的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1⊥PF2,则以F1,F2为焦点且经过P的椭圆的离心率等于(  )
A..$\frac{{\sqrt{5}}}{5}$B..$\frac{{\sqrt{6}}}{3}$C..$\frac{{\sqrt{2}}}{2}$D..$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足an=an-1+an-2(n>2,n∈N*),且a2015=1,a2017=-1,设{an}的前n项和为Sn,则S2020-S2016=(  )
A.-17B.-15C.-6D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若圆(x-3)2+(y+5)2=r2上的点到直线4x-3y-2=0的最短距离等于1,则半径r的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.矩形ABCD中,P为矩形ABCD所在平面内一点,且满足PA=3,PC=4.矩形对角线AC=6,则$\overrightarrow{PB}•\overrightarrow{PD}$=-$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈R,x>sinx,则p的否定形式为¬p:?x∈R,x≤sinx..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C经过A(1,3),B(-1,1)两点,且圆心在直线y=2x-1上.
(1)求圆C的标准方程;
(2)设直线l经过点(2,2),且l与圆C相交所得弦长为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα-cosα=$\frac{1}{5}$,则sin2α=$\frac{24}{25}$.

查看答案和解析>>

同步练习册答案