精英家教网 > 高中数学 > 题目详情

数列{an}满足a1+3•a2+32•a3+…+3n-1•an=数学公式,则an=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:由题干知a1+3•a2+32•a3+…+3n-1•an=,可知a1+3•a2+32•a3+…+3n-2•an-1=,两式相减即可得到an的表达式.
解答:∵a1+3•a2+32•a3+…+3n-1•an=…①,
∴a1+3•a2+32•a3+…+3n-2•an-1=…②
由①-②可知,3n-1•an=-
∴an=
故选A.
点评:本题主要考查数列递推式的知识点,解答本题的关键是求出{an-1}满足的等式,此题难度不大,是比较基础的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案