精英家教网 > 高中数学 > 题目详情
(2013•湖州二模)已知A,B,P是双曲线
x2
a2
-
y2
b2
=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA•kPB=3,则双曲线的离心率为(  )
分析:设出点点的坐标,求出斜率,将点的坐标代入方程,两式相减,再结合kPA•kPB=3,即可求得结论.
解答:解:由题意,设A(x1,y1),P(x2,y2),则B(-x1,-y1
∴kPA•kPB=
y2-y1
x2-x1
×
y2+y1
x2+x1
=
y22-y12
x22-x12

x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1

∴两式相减可得
y22-y12
x22-x12
=
b2
a2

∵kPA•kPB=3,
b2
a2
=3

c2-a2
a2
=3

∴e=2
故选C.
点评:本题考查双曲线的方程,考查双曲线的几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖州二模)已知程序框图如图,则输出的i=
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)已知直线l⊥平面α,直线m?平面β,则“α∥β”是“l⊥m”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)设f(x)为定义在R上的奇函数,且x>0时,f(x)=(
1
2
x,则函数F(x)=f(x)-sinx在[-π,π]上的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)已知全集U={1,2,3,4,5,6},M={2,3,5},N={4,5},则集合{1,6}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)定义
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1
,又bn=
an+1
4
,则
1
b1b2
+
1
b2b3
+…+
1
b10b11
=(  )

查看答案和解析>>

同步练习册答案