精英家教网 > 高中数学 > 题目详情
设命题p:函数f(x)=lg(ax2-x+
116
a)的定义域为R;命题q:3x-9x<a对一切的实数均成立,如果命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.
分析:可先求得p真与q真时x的范围,再由真值表作出解答即可.
解答:解:∵命题p:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R,
∴ax2-x+
1
16
a>0恒成立,
显然,a≠0,
a>0
1-
a2
4
<0
,解得a>2;
∵命题q:3x-9x<a对一切的实数均成立,令g(x)=3x-9x
则a>g(x)max
∵g(x)=3x-9x=-(3x-
1
2
)
2
+
1
4
1
4

∴g(x)max=
1
4

∴a>
1
4

∵“p或q”为真命题,且“p且q”为假命题,
∴命题p与命题q一真一假.
若p真q假,则a∈∅;
若p假q真,即
a≤2
a>
1
4
,则
1
4
<a≤2.
综上所述,
1
4
<a≤2.
故答案为:
1
4
<a≤2.
点评:本题考查命题的真假判断与应用,求得分别求得p真与q真时x的范围是关键,突出考查函数恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:函数f(x)═x+
ax
(a>0)在区间(1,2)上单调递增;命题Q:不等式|x-1|-|x+2|<4a对任意x∈R都成立.若“P或Q”是真命题,“P且Q”是假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(ax2-x+
14
a
)的定义域为R;命题q:不等式3x-9x<a对一切正实数x均成立.如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减;命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(x2-4x+a2)的定义域为R;命题q:?m∈[-1,1],不等式a2-5a-3≥
m2+8
恒成立.如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(ax2+2ax+2)的定义域为R;命题q:不等式
2x+1
<a+x
对任意x≥-
1
2
均成立,如果命题p或q为真命题,命题p且q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案