精英家教网 > 高中数学 > 题目详情
15.已知f(x)=(x2-3)ex(其中x∈R,e是自然对数的底数),当t1>0时,关于x的方程[f(x)-t1][f(x)-t2]=0恰好有5个实数根,则实数t2的取值范围是(  )
A.(-2e,0)B.(-2e,0]C.[-2e,6e-3]D.(-2e,6e-3

分析 求出f(x)的导数,单调区间和极值,画出f(x)的大致图象,讨论t1的范围,确定t2的范围,通过图象即可得到所求范围.

解答 解:f(x)=(x2-3)ex的导数为
f′(x)=(x2+2x-3)ex=(x-1)(x+3)ex
当-3<x<1时,f′(x)<0,f(x)递减;
当x>1或x<-3时,f′(x)>0,f(x)递增.
可得f(x)的极小值为f(1)=-2e,极大值为f(-3)=6e-3
作出y=f(x)的图象,如图:
当t1>0时,关于x的方程[f(x)-t1][f(x)-t2]=0
恰好有5个实数根,
即为f(x)=t1或f(x)=t2恰好有5个实数根,
若t1>6e-3,f(x)=t1只有一个实根,不合题意;
若0<t1<6e-3,f(x)=t1有三个实根,只要-2e<t2≤0,满足题意;
若t1=6e-3,f(x)=t1有两个实根,只要0<t2<6e-3,满足题意;
综上可得,t2的范围是(-2e,6e-3).
故选:D.

点评 本题考查函数和方程的转化思想,考查数形结合思想方法运用,以及导数的运用:求单调区间和极值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sin(π+α)=$\frac{1}{2}$,则cos(α-$\frac{3}{2}$π)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(0)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+2y-4≤0}\\{3x+y-3≥0}\\{x-y-1≤0}\end{array}}\right.$,则目标函数z=x-2y的最小值为(  )
A.$-\frac{16}{5}$B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直角坐标系xOy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t为参数),曲线${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数,a>1),若C1恰好经过C2的焦点,则a的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+cx+d,({c,d∈R})$,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)-m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0,f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2,两切线的斜率分别为k1,k2,是否存在实数c,使得$\frac{k_1}{k_2}$为定值?若存在,求出c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,点E、F分别为AD、CD的中点.
(1)求证:直线BE∥平面PCD;
(2)求证:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直线PB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.Sn为数列{an}的前n项和,已知an>0,an2+an=2Sn
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案