【题目】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
区间 | |||||
人数 | 50 | 50 | a | 150 | b |
(1)上表是年龄的频数分布表,求正整数的值;
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
【答案】(1),;(2)第1,2,3组分别抽取1人,1人,4人;(3).
【解析】
(1)根据频率分布直方图得出和的频率,即可得出正整数的值;
(2)利用分层抽样的性质,即可得出年龄在第1,2,3组的人数;
(3)利用列举法得出6人中随机抽取2人的所有情况,根据古典概型的概率公式求解即可.
解:(1)由题设可知,,.
(2)因为第1,2,3组共有人,
利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:
第1组的人数为,第2组的人数为,第3组的人数为,
所以第1,2,3组分别抽取1人,1人,4人.
(3)设第1组的1位同学为A,第2组的1位同学为B,第3组的4位同学为,则从6位同学中抽两位同学有:
,
共15种可能.
其中2人年龄都不在第3组的有:共1种可能,
所以至少有1人年龄在第3组的概率为.
科目:高中数学 来源: 题型:
【题目】某传染病疫情爆发期间,当地政府积极整合医疗资源,建立“舱医院”对所有密切接触者进行14天的隔离观察治疗.治疗期满后若检测指标仍未达到合格标准,则转入指定专科医院做进一步的治疗.“舱医院”对所有人员在“入口”及“出口”时都进行了医学指标检测,若“入口”检测指标在35以下者则不需进入“舱医院”而是直接进入指定专科医院进行治疗.以下是20名进入“舱医院”的密切接触者的“入口”及“出口”医学检测指标:
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立关于的回归方程;(回归方程的系数精确到0.1)
(Ⅱ)如果60是“舱医院”的“出口”最低合格指标,那么,“入口”指标低于多少时,将来这些密切接触者将不能进入“舱医院”而是直接进入指定专科医院接受治疗.(检测指标为整数)
附注:参考数据:,.
参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点的直线交抛物线于、两点,线段的中点的横坐标为,.
(1)求抛物线的方程;
(2)已知点,过点作直线交抛物线于、两点,求的最大值,并求取得最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确的是( )
A.获纪念奖的人数最多B.各个奖项中二等奖的总费用最高
C.购买奖品的费用平均数为6.65元D.购买奖品的费用中位数为5元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市组织高三全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如下:
B校样本数据统计表:
成绩(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人数(个) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(2)从A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,椭圆的上、下顶点分别为,,左、右顶点分别为,,左、右焦点分别为,.原点到直线的距离为.
(1)求椭圆的方程;
(2)是椭圆上异于,的任一点,直线,,分别交轴于点,,若直线与过点,的圆相切,切点为,证明:线段的长为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,己知是椭圆的右焦点,是椭圆上位于轴上方的任意一点,过作垂直于的直线交其右准线于点.
(1)求椭圆的方程;
(2)若,求证:直线与椭圆相切;
(3)在椭圆上是否存在点,使四边形是平行四边形?若存在,求出所有符合条件的点的坐标:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com