【题目】已知函数f(x)sincos(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,则ω的最大值为( )
A.2020B.4040C.1010D.
【答案】A
【解析】
利用辅助角公式对函数化简可得f(x)sincos2sin(),由对任意的实数x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立可得,两端点值分别为函数的最小值和最大值,要使得ω 最大,只要周期最大,当2020,周期最大,代入即可求得解.
利用辅助角公式对函数化解可得f (x)sincos2sin(),
由对任意的实数x,对任意的实数x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立;
可得f(x0),f(x0-2020),分别为函数的最大值和最小值,
要使得ω最大,只要周期最大,
当2020即T=4040=2ω时,周期最大,此时ω=2020.
故选:A.
科目:高中数学 来源: 题型:
【题目】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
A.3699块B.3474块C.3402块D.3339块
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正边长为3,点M,N分别是AB,AC边上的点,,如图1所示.将沿MN折起到的位置,使线段PC长为连接PB,如图2所示.
(1)求证:平面平面BCNM;
(2)若点D在线段BC上,且,求平面PDM和平面PDC所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面四边形ABCD是一个菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是线段PC上的任意一点,证明:平面PAC⊥平面QBD.
(2)当平面PBC与平面PDC所成的锐二面角的余弦值为时,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新年伊始,新型冠状病毒来势汹汹,疫情使得各地学生在寒假结束之后无法返校,教育部就此提出了线上教学和远程教学,停课不停学的要求也得到了家长们的赞同.各地学校开展各式各样的线上教学,某地学校为了加强学生爱国教育,拟开设国学课,为了了解学生喜欢国学是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:
喜欢国学 | 不喜欢国学 | 合计 | |
男生 | 20 | 50 | |
女生 | 10 | ||
合计 | 100 |
(1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系?
(2)针对问卷调查的100名学生,学校决定从喜欢国学的人中按分层抽样的方法随机抽取6人成立国学宣传组,并在这6人中任选2人作为宣传组的组长,求选出的两人均为女生的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com