精英家教网 > 高中数学 > 题目详情

如图,已知菱形所在平面与直角梯形所在平面互相垂直,,分别是线段,的中点.

(I)求证:平面 平面;
(Ⅱ)点在直线上,且//平面,求平面与平面所成角的余弦值。

(I)先证平面 (Ⅱ)       

解析试题分析:(1)证明:在菱形中,因为,所以是等边三角形,
是线段的中点,所以
因为平面平面,所以平面,所以;      
在直角梯形中,,得到:,从而,所以,      
所以平面,又平面,所以平面平面;       
(2)由(1)平面,如图,分别以所在直线为轴,轴,轴建立空间直角坐标系,

      
设点的坐标是,则共面,所以存在实数使得:

得到:.即点的坐标是:,       
由(1)知道:平面的法向量是,设平面的法向量是
则:,    
,则,即
所以,      即平面与平面所成角的余弦值是。 
考点:平面与平面垂直 二面角
点评:本题考查的知识点是平面与平面垂直的判定及二面角,其中熟练掌握直线与平面垂直的判定及性质,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.

(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体分别为各个面的对角线;

(1)求证:
(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且为底面对角线的交点,分别为棱的中点

(1)求证://平面
(2)求证:平面
(3)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面分别为的中点.

(I)证明:平面
(II)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,点分别为的中点.

(1)求直线与平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形, 中点.

(Ⅰ)证明:平面
(Ⅱ)求异面直线BS与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台。
如图,在四棱台中,下底是边长为的正方形,上底是边长为1的正方形,侧棱⊥平面.

(Ⅰ)求证:平面
(Ⅱ)求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形均为菱形,,且.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案