精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的左右顶点分别为,右焦点为,焦距为,点是椭圆C上异于两点的动点, 的面积最大值为.

(1)求椭圆C的方程;

(2)若直线与直线交于点,试判断以为直径的圆与直线的位置关系,并作出证明.

【答案】(1)(2)以为直径的圆与直线相切.

【解析】试题分析:(1)因为的面积最大值为,所以可列方程组解得(2)直线与圆位置关系的判断,一般利用圆心到直线距离与半径大小进行判断, 设,则可得直线PF方程,可得D点坐标,进而可得圆心,即BD中点坐标,再根据点到直线距离公式可得圆心到PF距离,最后与半径(BD一半)比较大小即可

试题解析:(1)由题意得, ,解得: ,所以,椭圆方程为: .

(2)以为直径的圆与直线相切.

证明:设直线 ,则: 的中点为

联立,消去整理得:

,由韦达定理得:

解得: ,故有:

,所以当时, ,此时轴,

为直径的圆与直线相切.

时,

所以直线 ,即:

所以点到直线的距离

,即知: ,所以以为直径的圆与直线相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在任意三角形ABC内任取一点Q,使SABQ SABC的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2
(1)求直线l方程;
(2)设Q(x0 , y0)为圆M上的点,求x02+y02的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面是正方形的四棱锥中中,侧面底面,且是等腰直角三角形,其中分别为线段的中点,问在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,,点D是BC的中点,点上,且

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}和{bn}的每一项都是正数,且a1=8,b1=16,且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列.
(1)求a2 , b2的值;
(2)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

(Ⅰ)求曲线处的切线方程;

(Ⅱ)关于的不等式恒成立,求实数的取值范围;

(Ⅲ)关于的方程有两个实根 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=tx2-(22t+60)x+144t(x>0).

(1)要使f(x)≥0恒成立,求t的最小值;

(2)令f(x)=0,求使t>20成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄种人群中各种血型的人所占的比例如下:

血型

A

B

AB

O

该血型的人所占比例(%)

28

29

8

35

已知同种血型的人可以输血,O型血可以输给任何一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问:

(1)任找一个人,其血可以输给小明的概率是多少?

(2)任找一个人,其血不能输给小明的概率是多少?

查看答案和解析>>

同步练习册答案