【题目】已知
(1)证明函数f ( x )的图象关于轴对称;
(2)判断在上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为,求此时a的值。
【答案】(1)证明见解析;(2)答案见解析;(3) ,或
【解析】试题分析:(1)定义域为,证明,确定函数为偶函数,从而证得函数的图象关于轴对称;(2)利用单调性的定义,设,作差,化简确定差的正负,从而证得函数的单调性;(3)根据(2)的结论,利用函数的单调性,即可得到函数的最大值,再根据函数的最大值为,列出等式,即可求得的值.
试题解析:(1)要证明函数的图象关于轴对称,只须证明函数是偶函数
∵,由
∴函数是偶函数,即函数的图象关于轴对称
(2).证明:任取且,因为
,
①当时,由0<,则,则...;
<0即;
②当时,由0<,则x1+x2>0,则...; 即;
所以,对于任意(),f(x)在上都为增函数。
(3)由(2)知在上为增函数,则当时,函数亦为增函数;
由于函数的最大值为,则,即,解得,或
科目:高中数学 来源: 题型:
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“”?“对任意的正数x,2x+≥1”与“对任意的正数x,2x+≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+≥1”一定成立,
即“a=”?“对任意的正数x,2x+≥1”为真命题;
而“对任意的正数x,2x+≥1的”时,可得“a≥”
即“对任意的正数x,2x+≥1”?“a=”为假命题;
故“a=”是“对任意的正数x,2x+≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
9
【题目】如图是一几何体的平面展开图,其中为正方形, , 分别为, 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面.
其中一定正确的选项是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等。
(1)求第三组的频率;
(2)已知实验班学生成绩在第五组,在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;
(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线x-y+2=0的距离为3。
(1)求椭圆的方程;
(2)设直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N。当|AM|=|AN|时,求m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是的菱形,侧面为正三角形,其所在平面垂直于底面.
(1)若为线段的中点,求证:平面;
(2)若为边的中点,能否在棱上找到一点,使平面平面?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程.
()若已知方程表示椭圆,则的取值范围为__________.
()语句“”是语句“方程”表示双曲线的(_____________).
A.充分不必要条件 B.必要不充分条件 C.充在条件 D.既不充分也不必要条件
()根据()的结论,以“如果那么”的形式写出一个正确命题,记作命题,则
命题:__________.
()套用量词命题的格式:“, ”或“, ”,改写()中命题,
表述形式为:__________.
()写出()中命题的逆命题,记作命题,则
命题:__________.
()判断()中命题的真假,并陈述判断理由.
命题为__________命题,因为__________.
()若已知方程表示椭圆,则该椭圆两个焦点的坐标分别为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=4sin(2x+), (x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
② y=f(x)可改写为y=4cos(2x-);
③y=f(x)的图象关于(-,0)对称;
④ y=f(x)的图象关于直线x=-对称;
其中正确的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com