精英家教网 > 高中数学 > 题目详情

已知数列的前项和,满足:.
(Ⅰ)求数列的通项
(Ⅱ)若数列的满足为数列的前项和,求证:.

(Ⅰ);(Ⅱ)详见解析.

解析试题分析:(Ⅰ)求数列的通项,由已知,而的关系为,代入整理得,可构造等比数列求通项公式;(Ⅱ)由,可求出,从而得,显然是一个等差数列与一个等比数列对应项积组成的数列,可用错位相减法求数列的和,可证.
试题解析:(Ⅰ)解:当时,,则当时,
两式相减得,即,∴,∴,当时,,则,∴是以为首项,2为公比的等比数列,
,∴
(Ⅱ)证明:,∴, 则 ,两式相减得,,当时,, ∴为递增数列,∴
考点:1、由求数列的通项公式, 2、错位相减法求数列的和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}满足.
(1)求证:数列为等比数列;
(2)是否存在互不相等的正整数,使成等差数列,且 成等比数列?如果存在,求出所有符合条件的;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若
⑴证明数列为等差数列,并求其通项公式;
⑵令,①当为何正整数值时,:②若对一切正整数,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是正数组成的数列,.若点在函数的导函数图像上.
(1)求数列的通项公式;
(2)设,是否存在最小的正数,使得对任意都有成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和,且.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足,且.
(1) 求数列的通项公式;
(2) 若,设数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列及其前项和满足:).
(1)证明:设是等差数列;(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前项和为,且 (为常数),令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的前项和为,且成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列是一个首项为,公差为的等差数列,求数列的前项和.

查看答案和解析>>

同步练习册答案