精英家教网 > 高中数学 > 题目详情
13.设O点为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,且以线段PQ为直径的圆过坐标原点O.
(1)求m的值;
(2)求直线PQ的方程.
(3)M为x轴上的一点,当△MPQ为钝角三角形时,求M的横坐标的取值范围.

分析 (1)曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,说明曲线是圆,直线过圆心,代入直线方程易求m的值;
(2)设P(x1,y1)、Q(x2,y2),PQ方程为y=-x+b.联立方程组,结合韦达定理,以及OP⊥OQ,求得b的方程,然后求直线PQ的方程.
(3)由$\left\{\begin{array}{l}{y=-x+1}\\{{x}^{2}+{y}^{2}+2x-6y+1=0}\end{array}\right.$,解得x的值,P,Q两点的坐标,△MPQ的三个内角都可能为钝角,分类讨论即可得解.

解答 解:(1)曲线方程为(x+1)2+(y-3)2=9,表示圆心为(-1,3),半径为3的圆.
∵点PQ在圆上且关于直线x+my+4=0对称.
∴圆心(-1,3)在直线上,代入直线方程得m=-1.…2分
(2)∵直线PQ与直线y=x+4垂直,
∴设Px1y1),Qx2y2),PQ方程为y=-x+b.…3分
y=-x+b代入圆方程得,
2x2+2(4-bx+b2-6b+1=0.
△=4(4-b2-8×(b2-6b+1)>0,∴2-3$\sqrt{2}$<b<2+3$\sqrt{2}$,
由韦达定理得,
x1+x2=b-4,x1x2=$\frac{{b}^{2}-6b+1}{2}$,…4分
y1y2=(-x1+b)(-x2+b
=b2-bx1+x2)+x1x2=$\frac{{b}^{2}+2b+1}{2}$,
∵$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,∴x1x2+y1y2=0,…5分
即$\frac{{b}^{2}-6b+1}{2}$+$\frac{{b}^{2}+2b+1}{2}$=0.解得b=1∈(2-3,2+3).∴所求的直线PQ方程为y=-x+1.…7分
(3)由$\left\{\begin{array}{l}{y=-x+1}\\{{x}^{2}+{y}^{2}+2x-6y+1=0}\end{array}\right.$得x2+3x-2=0,解得x=$\frac{-3±\sqrt{17}}{2}$,所以P($\frac{-3-\sqrt{17}}{2}$,$\frac{5+\sqrt{17}}{2}$),Q($\frac{-3+\sqrt{17}}{2}$,$\frac{5-\sqrt{17}}{2}$) …8分
1、若∠PMQ为钝角时,M点在以PQ为直径的圆内.而PQ中点为($\frac{-3}{2}$,$\frac{5}{2}$),所以以PQ为直径的圆与x轴交于两点O(0,0),A(-3,0),所以-3<x<0.…9分
2、当∠MPQ为钝角时,过P点且垂直于PQ的直线方程为y-$\frac{5+\sqrt{17}}{2}$=x+$\frac{3+\sqrt{17}}{2}$,令y=0得x=-4-$\sqrt{17}$,

所以x<-4-$\sqrt{17}$ …10分
3、当∠MQP为钝角时,过Q点且垂直于PQ的直线方程为y-$\frac{5-\sqrt{17}}{2}$=x-$\frac{-3+\sqrt{17}}{2}$,令y=0得x=$\sqrt{17}$-4,所以x>$\sqrt{17}$-4,由$\left\{\begin{array}{l}{y=-x+1}\\{y=0}\end{array}\right.$得直线PQ与x轴的交点为M(1,0),此时M,P,Q三点共线,所以x>$\sqrt{17}$-4且x≠1…12分
综上:当△MPQ为钝角三角形时,M的横坐标的取值范围为:(-∞,-4-$\sqrt{17}$)∪(-3,0)∪($\sqrt{17}$-4,1)∪(1,+∞)…13分

点评 本题考查直线与圆的方程的应用,直线的一般式方程,考查直线恒过定点,考查直线与圆的位置关系,函数与方程的思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,射线OA,OB与x轴的正方向分别成45°与30°的角,过点P(1,0)的直线与两射线分别交于C,D,若线段CD的中点恰好在直线y=$\frac{1}{2}$x上,求CD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={1,2,3,4},B={3,4,5},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}$(t为参数)与圆ρ=2$\sqrt{2}$sinθ的位置关系为(  )
A.相离B.相切C.相交D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,参数方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数)对应的曲线为线段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥DC,DC的延长线交PQ于点Q.
(1)求证:AC2=CQ•AB;
(2)若AQ=2AP,AB=$\sqrt{2}$,BP=2,求QD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,真命题的个数是(  )
①?α,β∈R,使得cos(α+β)=cosα+cosβ;
②若函数f(x)=|log2(x+1)|,则?x1,x2∈(-1,1)且x1<x2,使得f(x1)>f(x2);
③若$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|是$\overrightarrow{a}$⊥$\overrightarrow{b}$的充要条件;
④若ac2≥bc2则a≥b.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ax2-bx+3,且f(x)>0的解集为(-1,3),
(1)求函数f(x)的表达式;
(2)设g(x)=$\frac{f(x)}{x}$,若g(3+2sinθ)≥$\frac{1}{5}$m2-$\frac{12}{5}$m对任意θ∈R恒成立,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i•z=i-1(i为虚数单位),则z=(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

同步练习册答案