精英家教网 > 高中数学 > 题目详情
6.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{4}{b}$≥m+c恒成立,则实数m的取值范围为(  )
A.$(-∞,\frac{17}{2}]$B.$(-∞,\frac{13}{2}]$C.$[\frac{13}{2},+∞)$D.$[\frac{17}{2},+∞)$

分析 由G是△ABC的重心,则$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,代入求得(1-2c)$\overrightarrow{GA}$+(a+b-2c)$\overrightarrow{GB}$=$\overrightarrow{0}$,即可求得a+b=1,且c=$\frac{1}{2}$,利用基本不等式的性质,$\frac{1}{a}+\frac{4}{b}$=1+$\frac{b}{a}$+$\frac{4a}{b}$+4≥9,代入即可求得实数m的取值范围.

解答 解:由题意知,G是△ABC的重心,
则$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,即$\overrightarrow{GC}$=-($\overrightarrow{GA}$+$\overrightarrow{GB}$),
代入$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,得:
(1-2c)$\overrightarrow{GA}$+(a+b-2c)$\overrightarrow{GB}$=$\overrightarrow{0}$,
则$\left\{\begin{array}{l}{1-2c=0}\\{a+b-2c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a+b=1}\\{c=\frac{1}{2}}\end{array}\right.$,
由$\frac{1}{a}+\frac{4}{b}$=($\frac{1}{a}+\frac{4}{b}$)(a+b)=1+$\frac{b}{a}$+$\frac{4a}{b}$+4≥2$\sqrt{\frac{b}{a}×\frac{4a}{b}}$+5=9,
当且仅当$\frac{b}{a}$=$\frac{4a}{b}$,则a=$\frac{1}{3}$,b=$\frac{2}{3}$时,取等号,
$\frac{1}{a}+\frac{4}{b}$≥m+c,则m≤$\frac{1}{a}+\frac{4}{b}$-c=9-$\frac{1}{2}$=$\frac{17}{2}$,
∴m≤$\frac{17}{2}$,
∴实数m的取值范围(-∞,$\frac{17}{2}$],
故选A.

点评 本题考查向量的运算,考查三角形的重心的性质,基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.当$\frac{2}{3}$<m<1时,复数z=(m-1)+(3m-2)i在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log${\;}_{\frac{1}{5}}$$\frac{1}{3}$,b=log35,c=log5(cos$\frac{1}{5}$π),则(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱锥M-ABC的三侧棱两两垂直,底面ABC内一点N到三个侧面的距离分别为$2\sqrt{2},4,5$,则经过点M和N的所有球中,体积最小的球的表面积为49π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)对任意x∈R都有f(x)=f(x-4),且f(x)在区间[-2,0]上有f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{3}{2}x+5,-1≤x≤0}\\{{2}^{-x}+{2}^{x},-2≤x<-1}\end{array}\right.$,若方程f(x)=($\frac{1}{2}$)|x|+b恰好有4个不等的实数根,则实数b的取值范围是(  )
A.(0,2)B.(2,$\frac{33}{8}$)C.(2,$\frac{19}{8}$)D.($\frac{19}{8}$,$\frac{33}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x+$\frac{|2x|}{2x}$的图象是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,已知$a{cos^2}\frac{B}{2}+b{cos^2}\frac{A}{2}=\frac{3}{2}c,a=2b$.
(1)证明:△ABC为钝角三角形;
(2)若△ABC的面积为$3\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?(  )
A.18B.20C.21D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.各项均不为0的数列{an}满足$\frac{{{a_{n+1}}({{a_n}+{a_{n+2}}})}}{2}={a_{n+2}}{a_n}$,且a2=2a6=$\frac{1}{5}$,则数列$\left\{{\frac{1}{a_n}}\right\}$的前10项和为$\frac{375}{4}$.

查看答案和解析>>

同步练习册答案