精英家教网 > 高中数学 > 题目详情
(不等式选做题)已知函数f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,则实数a的取值范围为   
【答案】分析:先由f(x)≤g(x)分离出参数a得a≥|2x+1|-|x|,令h(x)=|2x+1|-|x|,下面求得h(x)的最小值,从而所求实数a的范围.
解答:解:由f(x)≤g(x)得a≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=(7分)
,从而所求实数a的范围为 (10分)
故答案为:[-,+∞]
点评:题主要考查了绝对值不等式的解法、函数存在性问题.对于函数存在性问题,处理的方法是:利用分离参数法转化为求函数的最值问题解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题(考生只能从A,B,C中选做一题,多做以所做第一题记分)
A.(不等式选做题)
已知a∈R,若关于x的方程x2+4x+|a-1|+|a+1|=0无实根,则a的取值范围是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(几何证明选做题)
如图,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为
π
π

C.(坐标系与参数方程选做题)
在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)(不等式选做题) 
已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(不等式选做题)已知函数f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,则实数a的取值范围为
[-
1
2
,+∞].
[-
1
2
,+∞].

查看答案和解析>>

科目:高中数学 来源: 题型:

(不等式选做题)已知不等式(x+y)( + )≥9对任意正实数x,y恒成立,则正实数a的最小值为_____.

查看答案和解析>>

同步练习册答案