6£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓ­À´·¢Õ¹µÄлúÓö£®2016Äê˫ʮһÆڼ䣬ij¹ºÎïƽ̨µÄÏúÊÛÒµ¼¨¸ß´ï516ÒÚÈËÃñ±Ò£¬Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÍƳöÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñµÄÆÀ¼ÛÌåϵÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³ö200´Î³É¹¦½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ0.6£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ0.75£®ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®
£¨1£©ÏÈÍê³É¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£¬ÔÙÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏ£¬ÒÔΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ¿
£¨2£©ÈôÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°¶ÔÉÌÆ·ºÃÆÀ¡±ºÍ¡°ÉÌÆ·²»ÂúÒ⡱Öгé³ö5´Î½»Ò×£¬ÔÙ´ÓÕâ5´Î½»Ò×ÖÐÑ¡³ö2´Î£¬ÇóÇ¡ÓÐÒ»´ÎΪ¡°ÉÌÆ·ºÃÆÀ¡±µÄ¸ÅÂÊ£®
¸½ÁÙ½çÖµ±í£º
P£¨k2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828
k2µÄ¹Û²âÖµ£º$k=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d
¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º
¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀa=80b=40120
¶ÔÉÌÆ·²»ÂúÒâc=70d=1080

·ÖÎö £¨1£©ÓÉÒÑÖªÁгö¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£¬´úÈ빫ʽÇóµÃk2µÄÖµ£¬¶ÔÓ¦Êý±íµÃ´ð°¸£»
£¨2£©²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÀûÓÃö¾Ù·¨µÃµ½´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨£¬²é³öÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊý£¬È»ºóÀûÓùŵä¸ÅÐ͸ÅÂʼÆË㹫ʽÇóµÃÖ»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º

¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀ8040120
¶ÔÉÌÆ·²»ÂúÒâ701080
ºÏ¼Æ15050200
µÃk2=$\frac{200¡Á£¨80¡Á10-40¡Á70£©^{2}}{150¡Á50¡Á120¡Á80}$¡Ö11.111£¾10.828£¬
¿ÉÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ®
£¨2£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÁîºÃÆÀµÄ½»Ò×ΪA£¬B£¬C£¬²»ÂúÒâµÄ½»Ò×Ϊa£¬b£¬´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨Îª£¨A£¬B£©¡¢£¨A£¬C£©¡¢£¨A£¬a£©¡¢£¨A£¬b£©¡¢£¨B£¬C£©¡¢£¨B£¬a£©¡¢£¨B£¬b£©¡¢£¨C£¬a£©¡¢£¨C£¬b£©¡¢£¨a£¬b£©£¬¹²¼Æ10ÖÖÇé¿ö£¬ÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊÇ£¨A£¬a£©¡¢£¨A£¬b£©¡¢£¨B£¬a£©¡¢£¨B£¬b£©¡¢£¨C£¬a£©¡¢£¨C£¬b£©£¬¹²¼Æ6ÖÖ£¬
Òò´Ë£¬Ö»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊΪ$\frac{3}{5}$£®

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éͳ¼ÆÓë¸ÅÂʵÄÏà¹Ø֪ʶ£¬¶Ô¿¼ÉúµÄ¶ÔÊý¾Ý´¦ÀíµÄÄÜÁ¦ÓкܸßÒªÇó£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÃüÌâp£º?x£¾1£¬x2-2x+1£¾0£¬Ôò©VpÊǼÙÃüÌ⣨ÕæÃüÌâ/¼ÙÃüÌ⣩£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªP£º?x¡ÊZ£¬x3£¼1£¬Ôò©VPÊÇ£¨¡¡¡¡£©
A£®?x¡ÊZ£¬x3¡Ý1B£®?x∉Z£¬x3¡Ý1C£®?x¡ÊZ£¬x3¡Ý1D£®?x∉Z£¬x3¡Ý1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôÖ±Ïß3x+4y+m=0Ïò×óƽÒÆ2¸öµ¥Î»£¬ÔÙÏòÉÏƽÒÆ3¸öµ¥Î»ºóÓëÔ²x2+y2=1ÏàÇУ¬Ôòm=23»ò13£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x-1£©-k£¨x-1£©+1£¨k¡ÊR£©£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©Èôf£¨x£©¡Ü0ºã³ÉÁ¢£¬ÊÔÈ·¶¨ÊµÊýkµÄÈ¡Öµ·¶Î§£»
£¨III£©Ö¤Ã÷£º$\frac{ln2}{3}+\frac{ln3}{4}+¡­+\frac{lnn}{n+1}£¼\frac{{n£¨{n-1}£©}}{4}£¨{N¡Ê{N_+}ÇÒn¡Ý2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÇóÓëÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{25}=1$ÓÐÏàͬµÄ½¹µã£¬ÇÒÁ½×¼Ïß¼äµÄ¾àÀëΪ$\frac{10}{3}$µÄË«ÇúÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©¼ÆË㣺$\sqrt{9}-\sqrt{2}¡Á\root{3}{2}¡Á\root{6}{2}$
£¨2£©ÒÑÖªx+x-1=3£¨x£¾0£©£¬Çóx${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÃüÌâP£ºº¯Êýy=sin$\frac{¦Ð}{2}$xÔÚx=a´¦È¡µ½×î´óÖµ£»ÃüÌâq£ºÖ±Ïßx-y+2=0ÓëÔ²£¨x-3£©2+£¨y-a£©2=8ÏàÇУ»ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôa£¬b£¬x£¬y¡ÊR£¬Ôò$\left\{\begin{array}{l}{x+y£¾a+b}\\{£¨x-a£©£¨y-b£©£¾0}\end{array}\right.$ÊÇ$\left\{\begin{array}{l}{x£¾a}\\{y£¾b}\end{array}\right.$³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þ£®£¨´Ó¡°³ä·Ö±ØÒª¡±£¬¡°³ä·Ö²»±ØÒª¡±£¬¡°±ØÒª²»³ä·Ö¡±£¬¡°¼È²»³ä·ÖÒ²²»±ØÒª¡±ÖÐÑ¡ÔñÊʵ±µÄÌîд£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸