精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分别是角A、B、C所对的边,则
abc2
的最大值为
 
分析:根据正弦、余弦定理化简已知条件,然后利用基本不等式即可求出所求式子的最大值.
解答:解:在三角形中,由正、余弦定理可将原式转化为:
ab•
a2+b2-c2
2ab
=ac•
a2+c2-b2
2ac
+bc•
b2+c2-a2
2bc

化简得:3c2=a2+b2≥2ab,
ab
c2
3
2
,即
ab
c2
的最大值为
3
2

故答案为:
3
2
点评:此题考查学生灵活运用正弦、余弦定理化简求值,会利用基本不等式求函数的最值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,则
AB
AC
的值为(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,则B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P为线段AB上的一点,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,则
1
x
+
1
y
的最小值为
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知SABC(a2+b2),求ABC

查看答案和解析>>

同步练习册答案