精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)满足 为常数

(1)求函数f(x)的表达式;

(2)如果f(x)为偶函数,求a的值;

(3)当f(x)为偶函数时,若方程f(x)=m有两个实数根x1,x2;其中x1<0,0<x2<1;求实数m的范围.

【答案】1fx=2x+a2x;(213

【解析】解:(1f(x)=x+,a是常数,令t=x,x=,

∴f(t)==2t+a2t 从而有f(x)=2x+a2x

(2)∵f(x)为偶函数,∴f(﹣x)=f(x)

∴2x+a2x=2x+a2x整理可得,(a﹣1)2x=(a﹣1)2x

∴a=1

(3)由(2)可得f(x)为偶函数,a=1,f(x)=2x+2x

n=2x,n>0,f(n)=n+,n>0的图象如图,

结合图象可得方程f(x)=m有两个实数根x1,x2

其中x1<0,0<x2<1f(n)=m有两个实数根n1,n2其中0<n1<1,1<n2<2

而函数f(n)=n+在(0,1)上单调递减,在(1,2)单调递增

结合图象可得,函数有两个交点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上三个向量 的模均为1,它们相互之间的夹角均为120°.
(1)求证:
(2)若|k |>1 (k∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的外接圆半径R= ,角A,B,C的对边分别是a,b,c,且 =
(1)求角B和边长b;
(2)求SABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A是实数集R的子集,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,则称x0为集合A的聚点,给出下列集合(其中e为自然对数的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1为聚点的集合有(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张老师开车上班,有路线①与路线②两条路线可供选择. 路线①:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间2分钟;若处遇红灯或黄灯,则导致延误时间3分钟;若两处都遇绿灯,则全程所花时间为20分钟.

路线②:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间8分钟;若处遇红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所花时间为15分钟.

(1)若张老师选择路线①,求他20分钟能到校的概率;

(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时,

(Ⅲ)设的两个零点,证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,已知.

(1)求角的大小;

(2),且,求边;

(3),求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x) (xR)

(1)求函数f(x)的最小值;

(2)已知mR,命题p:关于x的不等式f(x)m22m2对任意xR恒成立;q:函数y(m21)x是增函数.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案