【题目】已知定义在R上的函数f(x)满足 为常数
(1)求函数f(x)的表达式;
(2)如果f(x)为偶函数,求a的值;
(3)当f(x)为偶函数时,若方程f(x)=m有两个实数根x1,x2;其中x1<0,0<x2<1;求实数m的范围.
【答案】(1)f(x)=2﹣x+a2x;(2)1(3)
【解析】解:(1)f(x)=x+,a是常数,令t=x,则x=,
∴f(t)==2﹣t+a2t 从而有f(x)=2﹣x+a2x;
(2)∵f(x)为偶函数,∴f(﹣x)=f(x)
∴2x+a2﹣x=2﹣x+a2x整理可得,(a﹣1)2x=(a﹣1)2﹣x
∴a=1
(3)由(2)可得f(x)为偶函数,a=1,f(x)=2x+2﹣x
令n=2x,n>0,f(n)=n+,n>0的图象如图,
结合图象可得方程f(x)=m有两个实数根x1,x2,
其中x1<0,0<x2<1f(n)=m有两个实数根n1,n2其中0<n1<1,1<n2<2
而函数f(n)=n+在(0,1)上单调递减,在(1,2)单调递增
结合图象可得,函数有两个交点
科目:高中数学 来源: 题型:
【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的外接圆半径R= ,角A,B,C的对边分别是a,b,c,且 =
(1)求角B和边长b;
(2)求S△ABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A是实数集R的子集,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,则称x0为集合A的聚点,给出下列集合(其中e为自然对数的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1为聚点的集合有( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张老师开车上班,有路线①与路线②两条路线可供选择. 路线①:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间2分钟;若处遇红灯或黄灯,则导致延误时间3分钟;若两处都遇绿灯,则全程所花时间为20分钟.
路线②:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间8分钟;若处遇红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所花时间为15分钟.
(1)若张老师选择路线①,求他20分钟能到校的概率;
(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= (x∈R).
(1)求函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com