精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,长轴的一个顶点坐标为(2,0),离心率为
3
2

(1)求椭圆C的标准方程;
(2)设F1,F2为椭圆C的焦点,P为椭圆上一点,且PF1⊥PF2,求△PF1F2的面积.
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,由已知a=2,
c
a
=
3
2

所以,a=2,c=
3
,b=1
,椭圆C的方程为
x2
4
+y2=1

(2)设P(x1,y1),由已知PF1⊥PF2,所以
PF1
PF2
=0

(-
3
-x1,-y1)•(
3
-x1,-y1)=0
,x12+y12=3,
又因为
x21
4
+
y21
=1

解得y1
3
3
,所以,△PF1F2的面积S=
1
2
×2c•|y1|=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若△ABC的两个顶点坐标,△ABC的周长为18,则顶点C的轨迹方程是    (   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线
x2
25
+
y2
16
=1与曲线
x2
25+k
+
y2
16+k
=1(k>-16)的(  )
A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,O为坐标原点,设过点P(3,
2
)
的直线l,与x轴交于点F(2,0),如果一个椭圆经过点P,且以点F为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆以对称轴为坐标轴,且长轴是短轴的3倍,并且过点(3,0),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆与x轴的交点到两焦点的距离分别是3和1,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(-3,2)且与
x2
9
+
y2
4
=1有相同焦点的椭圆的方程是(  )
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知θ为斜三角形的一个内角,曲线F:x2sin2θcos2θ+y2sin2θ=cos2θ是(  )
A.焦点在x轴上,离心率为sinθ的双曲线
B.焦点在x轴上,离心率为sinθ的椭圆
C.焦点在y轴上,离心率为|cosθ|的双曲线
D.焦点在y轴上,离心率为|cosθ|的椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆
x2
16
+
y2
9
=1的短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程.

查看答案和解析>>

同步练习册答案