精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=logax(0<a<1)在[a,2a]上的最大值是其最小值的2倍,则a=

【答案】
【解析】解:∵0<a<1∴函数f(x)=logax在[a,2a]上为减函数
故当x=a时,函数f(x)取最大值1,
当x=2a时,函数f(x)取最小值1+loga2,
又∵函数f(x)=logax(0<a<1)在[a,2a]上的最大值是其最小值的2倍,
故loga2=﹣
即a=
所以答案是:
【考点精析】利用函数的值域对题目进行判断即可得到答案,需要熟知求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线交抛物线于两点,坐标原点为,且12.

(Ⅰ)求抛物线的方程;

(Ⅱ)当以为直径的圆的面积为时,求的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B﹣A1D﹣A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)记函数的两个零点分别为,且.已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又是增函数的是(
A.y=x+1
B.y=﹣x3
C.y=x|x|
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣|x2﹣ax﹣2|,a为实数.
(1)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(2)若函数f(x)在(﹣∞,﹣1)和(2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)若g(x)=kx﹣2k+5,对任意的m∈[1,4],总存在n∈[1,4],使得f(m)=g(n)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为

查看答案和解析>>

同步练习册答案