【题目】已知点,分别是椭圆 的长轴端点、短轴端点,为坐标原点,若,.
(1)求椭圆的标准方程;
(2)如果斜率为的直线交椭圆于不同的两点 (都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.
【答案】(1);(2).
【解析】试题分析:(1)由,利用平面向量数量积公式可得.
所以,由两边平方结合可得,求出 的值,从而可得结果;(2)直线的方程为,联立消去整理,得,根据韦达定理结合中点坐标公式,可得线段的中点坐标,利用斜率公式化简可得.
试题解析:(1)因为,
所以.
所以.
因为,
所以.
所以.
所以所求椭圆的方程为
(2)设直线的方程为(,为常数).
①当时,直线的方程为,此时线段的中点为在轴上,所以线段的垂线的斜率为0,即;
②当时,联立消去整理,得.
设点,,线段的中点,则,
由韦达定理,得,,所以.
所以.
所以.
所以直线的斜率为.
所以线段的垂线的斜率为.故与之间的关系是
综上,与之间的关系是.
科目:高中数学 来源: 题型:
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限与所支出的总费用(万元)有如表的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在给出的坐标系中作出散点图;
(2)求线性回归方程中的、;
(3)估计使用年限为年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式, .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
年产量(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根据表中数据,建立关于的线性回归方程;
,
(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区2019()年该农产品的产量;
②当为何值时,销售额最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,过的直线与椭圆交于两点,的周长为.
(1)求椭圆的方程;
(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点、(、都在轴上方).且.证明:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是.
(1)抽取的400名学生中视力在范围内的学生约有多少人?
(2)如果视力达到5.0以上算正常,用样本估计总体,求全市高一学生中视力正常的学生有多少人?
(3)从第4组和第5组的学生中按分层抽样的方式抽取样本容量为8人的样本,再从样本中随机抽取2人进行问卷调查,请求出2人来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下图中,四边形 ABCD是等腰梯形, , , 于M、交EF于点N, , ,现将梯形ABCD沿EF折起,记折起后C、D为、且使,如图示.
(Ⅰ)证明: 平面ABFE;,
(Ⅱ)若图6中, ,求点M到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从集合中任取三个不同的元素作为直线中的值,若直线倾斜角小于,且在轴上的截距小于,那么不同的直线条数有( )
A. 109条B. 110条C. 111条D. 120条
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com