精英家教网 > 高中数学 > 题目详情
4、定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),判断函数y=f(x)的奇偶性并证明.
分析:赋值求出f(0)=0,再令x1=-x,x2=x,有f(-x+x)=f(-x)+f(x)构造出f(-x)与f(x)的方程研究其间的关系,得出奇偶性,解答本题时注意做题格式,先判断后证明.
解答:解:f(x)为奇函数
证明:∵定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),
∴令x1=x2=0,有f(0+0)=f(0)+f(0).解得f(0)=0.
令x1=-x,x2=x,有f(-x+x)=f(-x)+f(x)=0,∴f(-x)=-f(x).
∴f(x)为奇函数.
点评:本题主要考查了抽象函数的奇偶性的判定,以及赋值法的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案