精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,且椭圆C上恰有三点在集合.

1)求椭圆C的方程;

2)若点O为坐标原点,直线AB与椭圆交于AB两点,且满足,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.

3)在(2)的条件下,求面积的最大值.

【答案】(1)(2)点O到直线AB的距离为定值(3)

【解析】

1)利用椭圆的对称性得椭圆必过,结合椭圆过点,求得的值,从而得到椭圆的方程;

2)设,对直线的斜率进行讨论,当斜率存在时设为

,代入点到直线的距离公式可得答案;

3)将弦表示成关于的函数,利用基本不等式求得弦的最大值,再代入三角形的面积公式,求得三角形面积的最大值.

1关于原点对称,故由题意知,椭圆C必过此两点

,又当椭圆过点时,

此时满足,符合题意.

所以椭圆.

又当椭圆过点时,

此时,不符合题意.

综上:椭圆.

2)设,若斜率存在,则设直线

,得

知,

代入得

又原点到直线AB的距离

且当AB的斜率不存在时,,可得,依然成立.

所以点O到直线AB的距离为定值.

3)由(2)知,

由(2)知,

因为,当且仅当,即时等号成立.

所以

易知当AB斜率不存在时,,所以

综上得的面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,判断函数在区间上的单调性;

(Ⅱ)若函数在定义域内有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设直线与曲线相交于两点,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,过点的直线与椭圆交于点的周长为.

1)求椭圆的标准方程;

2)若.①当时,求直线的方程;

②证明是定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样,对于直角坐标系内任意两点定义它们之间的一种距离直角距离):,请解决以下问题:

1)求线段)上一点到原点距离

2)求所有到定点距离均为2的动点围成的图形的周长;

3)在欧式几何学中有如下三个与距离有关的正确结论:

①平面上任意三点ABC

②平面上不在一直线上任意三点ABC,则是以为直角三角形

③平面上存在两个不同的定点AB若动点P满足,则动点P的轨迹是的垂直平分线

上述结论对于出租车几何学中的直角距离是否还正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求证:直线AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是甲、乙、丙三个企业的产品成本(单位:万元)及其构成比例,则下列判断正确的是(  )

A. 乙企业支付的工资所占成本的比重在三个企业中最大

B. 由于丙企业生产规模大,所以它的其他费用开支所占成本的比重也最大

C. 甲企业本着勤俭创业的原则,将其他费用支出降到了最低点

D. 乙企业用于工资和其他费用支出额比甲丙都高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两种理财产品,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

投资结果

获利

不赔不赚

亏损

概率

产品

投资结果

获利

不赔不赚

亏损

概率

注:

(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;

(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.

查看答案和解析>>

同步练习册答案