精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+bx2+cx+d(b,c,d为常数),当k∈(-∞,0)∪(4,+∞)时,f(x)-k=0只有一个实数根;当k∈(0,4)时,f(x)-k=0有3个相异实根,现给出下列4个命题:
①函数f(x)有2个极值点;
②函数f(x)有3个极值点;
③关于x的方程f(x)=4与方程f′(x)=0有一个相同的实根
④关于x的方程f(x)=0和f′(x)=0有一个相同的实根
其中正确命题的序号有
①③④
①③④
分析:由已知中f(x)=x3+bx2+cx+d,当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,故函数即为极大值,又有极小值,且极大值为4,极小值为0,逐一分析四个结论的正误,即可得到答案.
解答:解:∵函数f(x)=x3+bx2+xc+d,∴f′(x)=3x2+2bx+c
由题意,当k∈(-∞,0)∪(4,+∞)时,f(x)-k=0只有一个实根,
当k∈(0,4)时,f(x)-k=0有3个相异实根,
故函数即为极大值,又有极小值,
且极大值为4,极小值为0,故①正确,②错误;
f(x)-4=0与f'(x)=0有一个相同的实根,即极大值点,故③正确;
f(x)=0与f'(x)=0有一个相同的实根,即极小值点,故④正确,
故正确命题的个数是3个
故答案为:①③④.
点评:本题考查根的存在性及根的个数判断,函数的导数与函数的极值点问题,根据已知条件,判断出函数f(x)=x3+bx2+cx+d的图象和性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案