精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

写出曲线的极坐标的方程以及曲线的直角坐标方程;

若过点(极坐标)且倾斜角为的直线与曲线交于 两点,弦的中点为,求的值.

【答案】(Ⅰ)曲线的极坐标方程为: ;曲线的直角坐标方程为:

.(Ⅱ) .

【解析】试题分析:(1先消参数得的普通方程,再根据得曲线的极坐标的方程,利用将曲线的极坐标方程化为直角坐标方程2先求直线参数方程,再代入的普通方程,利用韦达定理以及参数几何意义求的值.

试题解析: 由题意的方程为: 可得的普通方程为:

代入曲线方程可得: .

因为曲线的极坐标方程为

所以.

.

所以.

所以曲线的极坐标方程为: ;曲线的直角坐标方程为:

.

因为点,化为直角坐标为所以.

因为直线过点且倾斜角为,所以直线的参数方程为为参数),代入中可得:

所以由韦达定理:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;

(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?

注:年利润=年销售收入-年总成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为的中点, 是边长为2 的正三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆经过点,离心率,直线的方程为.

求椭圆的方程;

是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记 的斜率为 .问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,
(1)设 ,证明:数列{bn}是等差数列;
(2)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, .某同学家里有一辆该品牌车且车龄刚满三年,记为该品牌车在第四年续保时的费用,求的分布列与数学期望值;(数学期望值保留到个位数字)

某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,sinB= ,cosA= ,则sinC为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点组成的四边形的面积为,且经过点.

1)求椭圆的方程;

(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于两点,与交于点,四边形的面积分别为.的最大值.

查看答案和解析>>

同步练习册答案