精英家教网 > 高中数学 > 题目详情
8.不等式4x2-x-5≤0的解集为[-1,$\frac{5}{4}$].

分析 根据一元二次不等式4x2-x-5≤0对应方程的根,写出它的解集即可.

解答 解:不等式4x2-x-5≤0可化为:
(4x-5)(x+1)≤0,
该不等式对应的方程的实数根是$\frac{5}{4}$和-1,
∴该不等式的解集为[-1,$\frac{5}{4}$].
故答案为:[-1,$\frac{5}{4}$].

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=sin(2πtanx),$x∈(-\frac{π}{2},\frac{π}{2})$的所有零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.实数x,y满足不等式组$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$则目标函数z=x+2y的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设不等式$\sqrt{x}$+$\sqrt{y}$≤a$\sqrt{x+y}$对一切x>0,y>0恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=cos2x+2sinxcosx,则下列说法正确的是(  )
A.f(x)的图象关于直线$x=\frac{5}{8}π$对称
B.f(x)的图象关于点($-\frac{3}{8}π$,0)对称
C.若f(x1)=f(x2),则x1-x2=kπ,k∈Z
D.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于集合A到B的映射f,如果集合B中的元素m在集合A中没有元素与之对应,就称m为闲元素.现有A=B=R,A到B的映射f:x→y=4x-3•2x,若m为集合B的闲元素,则m的取值范围是m<-$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平行六面体ABCD-A1B1C1D1的所有棱长都是1,且∠A1AB=∠A1AD=∠BAD=60°,E、F分别为A1B1与BB1的中点,求异面直线BE与CF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\frac{16x}{{x}^{2}+4}$(x>0),则函数f(x)的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$),求函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

同步练习册答案