精英家教网 > 高中数学 > 题目详情

【题目】某公司为改善职工的出行条件,随机抽取50名职工,调查他们的居住地与公司的距离d(单位:千米).若样本数据分组为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],由数据绘制的分布频率直方图如图所示,则样本中职工居住地与公司的距离不超过4千米的人数为人.

【答案】24
【解析】解:样本中职工居住地与公司的距离不超过4千米的频率为:(0.1+0.14)×2=0.48, 所以样本中职工居住地与公司的距离不超过4千米的人数为:50×0.48=24人
所以答案是:24.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:

3

4

5

6

2.5

3

4

4.5

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=fx)图象上存在不同的两点AB关于y轴对称,则称点对[AB]是函数y=fx)的一对“黄金点对”(注:点对[AB][BA]可看作同一对“黄金点对”).已知函数fx=,则此函数的“黄金点对“有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若数列的前n项和,求数列的通项公式.

2)若数列的前n项和,证明为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则 + +
(2) + + 是|a﹣b|<|c﹣d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)的定义域为R,对任意,有>-1,且f(1)=1,下列命题正确的是(  )

A. 是单调递减函数

B. 是单调递增函数

C. 不等式的解集为

D. 不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为: .估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育运动时间与性别有关


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

同步练习册答案