【题目】若、是函数(,)的两个不同的零点,且、、适当排序后可构成等差数列,也可适当排序后构成等比数列,则________
【答案】
【解析】
a,b是函数f(x)=x2px+q(p>0,q>0)的两个不同的零点,可得a+b=p,ab=q,p>0,q>0,△=p24q>0.不妨设a<b.由于a,b,4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得4,a,b或b,a,4成等差数列,a,4,b或b,4,a成等比数列,即可得出.
解:∵a,b是函数f(x)=x2px+q(p>0,q>0)的两个不同的零点,
∴a+b=p,ab=q,p>0,q>0,△=p24q>0.
不妨设a<b.
由于a,b,4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,
∴4,a,b或b,a,4成等差数列,a,4,b或b,4,a成等比数列,
∴b4=2a,ab=(4)2,
解得a=2,b=8.
∴p=10,q=16.
满足△≥0.
则p+q=26.
故选:C.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:.记作数列,若数列的前项和为,则___ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,是椭圆上在第二象限内的一点,且直线的斜率为.
(1)求点的坐标;
(2)过点作一条斜率为正数的直线与椭圆从左向右依次交于两点,是否存在实数使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在是增函数,其图像如图所示.
(1)已知,,利用上述性质,求函数的单调区间和值域;
(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中不正确的是( )
A.顺序结构是由若干个依次执行的步骤组成的,每一个算法都离不开顺序结构
B.循环结构是在一些算法中从某处开始,按照一定的条件,反复执行某些步骤,所以循环结构中一定包含条件结构
C.循环结构中不一定包含条件结构
D.用程序框图表示算法,使之更加直观形象,容易理解
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人用农药治虫,由于计算错误,在A,B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个能容纳1千克药水的药瓶,他们从A,B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为an%,B喷雾器中药水的浓度为bn%.
(1)证明an+bn是一个常数;
(2)求an与an-1的关系式;
(3)求an的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 ,过直线:上任一点向抛物线引两条切线(切点为,且点在轴上方).
(1)求证:直线过定点,并求出该定点;
(2)抛物线上是否存在点,使得.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com