精英家教网 > 高中数学 > 题目详情

【题目】设二次函数f(x)=ax2+bx+c(a,b∈R)满足条件:①当x∈R时,f(x)的最大值为0,且f(x﹣1)=f(3﹣x)成立;②二次函数f(x)的图象与直线y=﹣2交于A、B两点,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的实数n(n<﹣1),使得存在实数t,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.

【答案】解:(Ⅰ)由f(x﹣1)=f(3﹣x)可知函数f(x)的对称轴为x=1,
由f(x)的最大值为0,可假设f(x)=a(x﹣1)2 . (a<0)
令a(x﹣1)2=﹣2,x=1,则易知2=4,a=﹣
所以,f(x)=﹣(x﹣1)2
(Ⅱ)由f(x+t)≥2x可得,-(x﹣1+t)2≥2x,即x2+2(t+1)x+(t﹣1)2≤0,
解得﹣t﹣1-2≤x
又f(x+t)≥2x在x∈[n,﹣1]时恒成立,
可得由(2)得0≤t≤4.
令g(t)=﹣t﹣1﹣2,易知g(t)=﹣t﹣1﹣2单调递减,
所以,g(t)≥g(4)=﹣9,
由于只需存在实数,故n≥﹣9,则n能取到的最小实数为﹣9.
此时,存在实数t=4,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.
【解析】(Ⅰ)根据题意可假设f(x)=a(x﹣1)2 . (a<0),令a(x﹣1)2=﹣2,x=1 , 求解即可得出解析式.
(Ⅱ)利用不等式解得﹣t﹣1-2≤x , 又f(x+t)≥2x在x∈[n,﹣1]时恒成立,转化为令g(t)=﹣t﹣1﹣2 , 易知g(t)=﹣t﹣1﹣2单调递减,
所以,g(t)≥g(4)=﹣9,得出n能取到的最小实数为﹣9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,点在椭圆上,为坐标原点,且,则椭圆的离心率的取值范围为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.

(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为(  )
A.(0,
B.(0,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列,且成等差数列.

(Ⅰ)求数列的通项公式

(Ⅱ)若数列满足为数列的前项和. 设,当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的S为(  )

A.2
B.
C.-
D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是(  )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

【答案】

【解析】

延长的延长线与点Q,连接QEPA于点K,设QA=x

,得,则,所以.

的中点为M,连接EM,则

所以,则,所以AK=.

AD//BC得异面直线所成角即为,

则异面直线所成角的正切值为.

型】填空
束】
17

【题目】在极坐标系中,极点为,已知曲线 与曲线 交于不同的两点

(1)求的值;

(2)求过点且与直线平行的直线的极坐标方程.

查看答案和解析>>

同步练习册答案