精英家教网 > 高中数学 > 题目详情

【题目】解答
(1)已知a,b为正整数,a≠b,x>0,y>0.试比较 + 的大小,并指出两式相等的条件.
(2)用(1)所得结论,求函数y= + ,x∈(0, )的最小值.

【答案】
(1)解:a,b为正整数,a≠b,x>0,y>0,

可得(x+y)( + )=a2+b2+ +

≥a2+b2+2 =a2+b2+2ab=(a+b)2

即有 + ,当且仅当ay=bx时取得等号


(2)解:函数y= + ,x∈(0,

即为y= +

由(1)可得 + =25.

当且仅当6x=3(1﹣3x),即x= 时,取得最小值25


【解析】(1)展开(x+y)( + )=a2+b2+ + ,再由基本不等式可得 + 的大小和等号成立的条件;(2)将函数y= + ,x∈(0, )化为y= + ,即可运用第一题的结论,求得最小值.
【考点精析】本题主要考查了基本不等式的相关知识点,需要掌握基本不等式:,(当且仅当时取到等号);变形公式:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,则f(x)的最大值为(
A.1
B.0
C.﹣1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足(x﹣2)f′(x)>0,若2<a<4则(  )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a
C.f(3)<f(log2a)<f(2a
D.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程x2+px﹣12=0和x2+qx+r=0的解集分别是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是R上的奇函数,且的图象关于对称,当时,

(Ⅰ)当 时,求的解析式;

(Ⅱ)计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|=
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+a﹣1在区间[0,1]上有最小值﹣2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

)当时,求函数上的最大值和最小值;

)求函数的单调递增区间.

查看答案和解析>>

同步练习册答案